If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x+x^2=225
We move all terms to the left:
15x+x^2-(225)=0
a = 1; b = 15; c = -225;
Δ = b2-4ac
Δ = 152-4·1·(-225)
Δ = 1125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1125}=\sqrt{225*5}=\sqrt{225}*\sqrt{5}=15\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15\sqrt{5}}{2*1}=\frac{-15-15\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15\sqrt{5}}{2*1}=\frac{-15+15\sqrt{5}}{2} $
| (3x+4)=17 | | -5x-36=80-9x | | 2(3x+8)=-34+44 | | 4x+22=98 | | -7x+2=3x-78 | | 7x+8(33/17)=4 | | 4x^2-5+7x=0 | | -90-11x=126-2x | | 21/6j=51/5 | | 2(5x+5)=-20+10 | | (2x-4)=11 | | -2(x+1/3+9x=4 | | 2(x-1)3x=3 | | 0.02-0.05x=0.68+0.3x | | 12(2w-1)=6(4w+2) | | -68+3x=72-2x | | 2u-22=-5(u-4) | | 3x+10=9x-39 | | 9=2n-5 | | 2/5(x-3)=2+3/5x | | 8t+5=2t+5 | | 3x-8-8+90=180=180 | | 2/5(9x-3)=2+3/5x | | -166-x=-12x+181 | | P-1=-6+2p | | 4r-8=88 | | C=15n+85$385 | | 6x-3=1x+-18 | | T=50-(h/20) | | 36=6/a | | 3w-4=140 | | 4x+12=-5x+102 |